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ABSTRACT 

Using modern algorithms, an ideal launch vehicle trajectory can be calculated based on 

the principles of optimal control theory. Conventional approaches, such as shooting, seek 

to find the solution to a Hamiltonian boundary value problem. Finding solutions to a 

boundary value problem can be time consuming and difficult due to the twin curses of 

sensitivity and dimensionality. In an effort to alleviate these problems, pseduospectral 

optimal control theory can be used to reduce the time and effort required to design 

optimal launch trajectories. Problem formulation is shown to be a key step in this process. 

To illustrate the idea, a launch vehicle trajectory optimization problem is solved for 

maximizing the final velocity of the first stage of a multi-stage rocket assuming that all 

fuel will be expended. The sensitivity of the solution to uncertainties is examined by 

modeling environmental uncertainties as Gaussian processes in a Monte Carlo 

simulation. Combining optimal control and Monte Carlo analysis improves the planning 

process by allowing for worst case scenarios to be identified and mitigated. 
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I. INTRODUCTION 

A. OVERVIEW 

Since the start of launching vehicles into space, there has been an ongoing effort 

to reduce the cost, safety, and reliability of a reusable launch vehicle (RLV). One aspect 

that this research is looking to correct is the time required to develop optimal launch 

trajectories. Optimal launch trajectories are essential to ensure that the most cost effective 

launch trajectory is flown. In this research, the algorithm that will be used is DIDO. 

DIDO is a MATLAB optimal control toolbox that was named after Dido, the founder and 

first queen of Carthage. She is famous for her use of mathematics in solving an optimal 

control problem (OCP) before calculus was even invented. DIDO is based on 

pseudospectral optimal control theory that is designed to solve an OCP in the same 

manner as using equations on a piece of paper [1]. The difficulties in solving for costates 

are eliminated by the convector mapping principle therefore DIDO produces spectrally 

accurate solutions [2]. With this tool, a more convenient method to determine launch 

trajectories can be developed to help reduce the time spent on the solution of a launch 

trajectory.  

There is a great demand for satellite based equipment and it only keeps getting 

larger. The military is heavily reliant on launch vehicles since a vast majority of its net-

centric warfare is based on satellite communications [3]. A great deal of U.S. national 

security surveillance is done via satellite for the ability to gather the most real time 

informational available [4]. The global positioning system (GPS) is not only vital to the 

military but to the civilian realm as well. The civil maritime and aviation communities 

rely heavily on GPS for accurate positioning for reliability and cost savings. Lastly, 

NASA has a huge demand for launch vehicles as they are responsible for resupplying the 

International Space Station (ISS) and sending probes for deep space exploration, as well 

as other satellite missions such as the James Webb Space Telescope [5].  
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B. DIFFICULTIES WITH THE CURRENT APPROACH 

The current cost to launch a pound of payload into an Earth orbit is around 

$10,000 [6]. In order to reduce the total cost of launch, industry is constantly looking to 

reduce the mass of the objects being sent into orbit. The other aspect is to reduce the cost 

to launch that object into space. This is the primary reason why companies are trying to 

optimize launch vehicle trajectories. The current industry standard for optimizing launch 

trajectories is the NASA program to optimize simulated trajectories (POST) [7]. This is 

an immensely complicated program that takes months to understand how to operate. 

POST takes the position of using a direct shooting method to calculate state variables as a 

function of time [8]. Another aspect is that POST requires an initial guess for each 

independent variable that would otherwise be held constant. Developing the initial guess 

can be very time consuming [9]. That complication leads to how long it takes to develop 

a launch trajectory and the intense man power required. A successful launch would 

require being able to predict conditions months in advance. If launch conditions are 

outside of those that were predicted, the launch may have to be terminated. 

C. OBJECTIVE 

This thesis research was done to target the method in which launch trajectories are 

developed. The goal is to use a modern algorithm, DIDO, to reduce the time that is 

required to develop launch trajectories. DIDO removes the traditional shooting method to 

solve the OCP by using pseudospectral optimal control theory [1]. By being able to 

develop a trajectory closer to the launch date allows for a more accurate prediction of 

conditions to develop a more accurate trajectory. This will drastically reduce the 

manpower costs to become trained on the software and develop trajectories.  

Another aspect that this thesis research contributes to is a move towards more 

automation. The goal being that the algorithm is robust enough that the only portions that 

need to be changed are the starting conditions and the endpoint conditions. This further 

increases the simplicity of the method to solve the given problem. 

This thesis research specifically addresses the goal of maximizing the first stage 

final velocity. This problem was chosen in an effort to obtain a launch vehicle final 
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velocity that was closer to the final orbital velocity in a more expeditious manner. To 

account for real world uncertainties, a Gaussian process was used in a Monte Carlo 

simulation to allow the worst case performance to be identified. This knowledge will lead 

to more flexibility in the launch window and a more reliable launch trajectory. 

D. THESIS OUTLINE 

This thesis is written in a manner that shows the reader the development of an 

optimal control problem to the application of optimal control to this research. Chapter II 

provides an introduction of optimal control and the process that is used to solve an 

optimal control problem. Chapter III introduces the launch problem that is to be solved 

by this thesis and also provides the hand calculations that set up the boundary value 

problem. These are used later for verification and validation of the pseudospectral 

optimal control solution. Chapter IV first starts off with a validation of the results to 

demonstrate that an optimal solution has been found. The chapter then displays the results 

for visualization of the trajectory and to prove that the results obtained were optimal 

using the derived equations from Chapter III and propagation of the controls. Chapter IV 

then introduces the uncertainty analysis that was performed to test for variations in 

environmental parameters. Chapter VI gives some conclusions and suggests some ideas 

for future work. 
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II. OPTIMAL CONTROL THEORY 

A. INTRODUCTION 

The popularity for using optimal control is based on three main reasons. The first 

reason is that there is a cost function associated with the problem that can be minimized. 

The types of minimized cost can be time, fuel, effort, or any other performance objective. 

As stated before, the objective of this thesis research is to maximize final velocity. The 

next benefit to optimal control is the use of dynamics equations. The dynamics equations 

allow the user to more accurately model a trajectory that the system can fly. As compared 

to kinematics only, this allows for the prediction of what the system will do to a high 

degree of accuracy. Lastly, optimal control provides the ability to apply constraints to the 

system to be able to control the behavior. The constraints can be in the form of time, 

states, controls, and boundary conditions.  

The process that is used to solve optimal control problems involves first 

constructing the Hamiltonian. The Hamiltonian is key to deriving the Hamiltonian 

minimization, the costate dynamics (adjoint) equations, and the transversality condition. 

In the following analysis, x is the state variable and u is the control variable. The costate 

vector used in this analysis is the Lagrange multiplier function and is annotated as  t  

[10]. The addition of this function will be further described in the next section. 
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B. A GENERIC OPTIMAL CONTROL PROBLEM 

A generic optimal control problem (OCP) is given as: 

  (1) 

In (1),  is the cost function that should be minimized. The cost function is 

composed of the endpoint cost,   ,f fE x t t  and the running cost,     
0

,
ft

t
F x t u t dt . 

The endpoint cost is associated with the final time of the simulation. Example endpoint 

costs can be final time, remaining fuel, terminal velocity, etc. The running cost is cost 

accumulated during the entire flight time. An example of running cost is control effort. 

The dynamics portion is defined by , the initial condition is defined as

0x , and the start and end times are defined by 0t and ft . Lastly, any endpoint constraints 

are contained in the equation    0fe x t  . An example of an endpoint constraint can be 

the conditions to maintain a specific orbit. 

 

Figure 1.  Optimal maneuver, from [11] 

The application of the above equations is seen in Figure 1 as the object starts at 

some initial condition and maneuvers along a trajectory to a desired end condition along a 
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given dynamic constraint. The problem starts at 0 0,x t  and the spacecraft maneuvers itself 

to endpoint, which satisfies the constraint of ( , ) 0f fe x t    

C. SOLVING AN OPTIMAL CONTROL PROBLEM 

In the 1950s, finding solutions to the standard problem formulation given in (1) 

was causing problems for Soviet engineers who knew that the problems being 

encountered were from the math and not the engineering. This led the Russian military to 

approach an individual by the name of Lev Pontryagin to help solve this problem. While 

creating a general problem of optimal control, Pontryagin realized that constraints on the 

control need to be included and special attention needs to be given to optimization. This 

gave birth to the present form of optimal control theory [12]. 

It is the minimization of the Hamiltonian that needs to be given the proper 

attention. When the Hamiltonian is minimized, the endpoints of the control constraint 

need to be evaluated to determine true minimum. This process is described as:  

 
 min , ,

L U

H x u

u u u



 
 (2)  

Equation (2) is the Hamiltonian minimization condition (HMC). Pontryagin 

proved that the minimized Hamiltonian is always constant as a function of time with the 

value zero for problems independent of time, -1 for a minimum time problem [12].  

Solving Pontryagin’s problem can be decomposed into four steps. When solving 

the problem, as stated above, the first step is to solve for the Hamiltonian. The 

Hamiltonian is a function of the running cost and the product of the costate vector with 

the dynamics equations: 

      , , : , ,TH x u F x u f x u    (3) 

The next step is to perform the Hamiltonian minimization. This involves taking 

the partial derivative of the Hamiltonian with respect to each control variable and setting 

the derivative equal to zero.  

The goal of this step is to be able to remove the dependence of the control 

variable, u, from the Hamiltonian equation. If u does not appear explicitly, the partial 
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derivative is interpreted as a switching function. The switching function is describes how 

u switches from ul to uu (the control bounds) throughout the maneuver. The next step is to 

derive the adjoint equations. This step forms the dynamics of the costate variables, as a 

function of time, for each state variable. The adjoint equation is needed because the 

minimized Hamiltonian is a function of ( )t . Therefore, the costate needs to be solved. 

This is done by taking the negative of the partial derivative of the Hamiltonian with 

respect to each of the state variable. This gives the adjoint equation.  

  (4) 

The last step is to apply the transversality condition. This involves taking the 

partial of the endpoint Lagrangian with respect to the state at the terminal time. 

  f
f

E
t

x
 




 (5) 

In (5) E  is the Endpoint Lagrangian. 

         , : T
f f fE x t E x t e x t    (6) 

From here, the classical approach is to form a boundary value problem (BVP) 

using the dynamics and adjoint equations together with the boundary conditions and the 

transversality condition. A common approach to solve the BVP is to use a shooting 

method. 

D. EXAMPLE PROBLEM 

To illustrate the application of the idea in the previous section, a simple example 

problem will be studied. The example that will be solved in the section is a 1-D linear 

quadratic problem [11]. 
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  (7) 

Examining the cost function, it can be seen that    0fE x t   and   21
,

2
F x u u . 

There is only one dynamics equation and that is . From here, the 

Hamiltonian can now be derived. 

        21
, , , ,

2
TH x u F x u f x u u x u        (8) 

Now, the Hamiltonian minimization is accomplished by taking the partial 

derivative of H with respect to u.  

 0
H

u
u


  


 (9) 

This allows for u to be solved for in terms of λ, which gives u   . Since u is a 

function of ( )t  , the adjoint equation will be needed to solve for the costate history. The 

adjoint equation is the next step in solving the problem. This involves taking the partial 

derivative of the Hamiltonian with respect to x. 

  (10) 

From (10), it can be seen that the solution to the adjoint equation λ is an 

exponential. Now, the last part is to apply the transversality condition. The first part of 

this involves solving for the endpoint Lagrangian. 

         , : T
f f f fE x t E x t e x t x      (11) 

Once the endpoint Lagrangian is constructed, to obtain the transversality 

condition, the partial derivative of the endpoint Lagrangian is taken with respect to the 

endpoint condition. 
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  f
f

E
t

x
 

 


 (12) 

The result in (12) shows that the value of the costate is an unknown,  , at ft . 

Thus no new information results from this step. The transversality condition is not 

necessary, in this case, because only two boundary conditions are needed and these are 

provided by the given problem. After these four steps are completed, the following 

boundary value problem can be constructed. 

  (13) 

From here, the problem can be solved numerically to obtain ( )t  and hence u(t), 

which is desired. This process is not necessarily easy to accomplish. Due to the instability 

of the Hamiltonian system, the integrated equation can “blow up” even in the face of a 

very accurate guess for the unknown initial values [13]. This is where the MATLAB tool 

DIDO can make life a lot easier. Once the cost function, dynamics equations, constraints, 

and events are programmed into DIDO, the algorithm will solve for the states, controls, 

Hamiltonian, and costates as a function of time, without the need to construct the BVP. 

This is much easier than building for the BVP and using a shooting algorithm to solve the 

problem. It takes away the need to build an algorithm that converges on a solution 

without an accurate initial guess. With the optimal control trajectories, they can be 

propagated to solve for the states via an ordinary differential equation (ODE) for 

verification and validation purposes. 

E. SUMMARY 

This chapter explained why optimal control is widely used based on its many 

advantages. It then went on to set up a generic OCP that was to be solved using the 

method defined in this chapter. After the process for solving an OCP was defined, an 

example problem was introduced to further illustrate the procedure. The next chapter will 

define the launch vehicle problem that is to be addressed by this thesis research. 
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III. LAUNCH PROBLEM FORMULATION 

A. INTRODUCTION 

In this chapter, the launch vehicle problem is defined along with the desired goal. 

Here Pontryagin’s principle is used to set up the BVP but it is not completely solved in 

this chapter. The BVP provides information that can be checked to verify that an optimal 

solution has been found. In the next chapter, the problem is solved using DIDO. 

B. THE LAUNCH PROBLEM 

This section will identify the variables and parameters that will be used to 

construct the launch OCP starting with states, controls, cost, and lastly the dynamics 

equations. The first part to building this problem is to define the state vector and the 

control vector. The state vector for the problem includes the Cartesian positions, 

velocities, and thrust direction cosines. They are shown in Equation 14. 

 
x

y

z

x

y

z

x

y

z

v

v

v

c

c

c

x

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (14) 

The positions (x, y, and z) are in units of kilometers (km), the velocities (vx, vy,, and vz) 

are in kilometers/second (km/s), and the thrust direction cosines (cx, cy, and cz) are unit 

less as this unit vector that simply provides the direction of the constant thrust. The 

controls are the rates of change of the unit thrust vector and the Euclidean distance of the 

launch vehicle from the origin of a reference frame. The radius vector was added as a 

control to introduce a constraint to prevent the launch vehicle from entering the surface of 

the Earth, i.e. Er r . The constraint Er r  also avoids a potential situation where zero 
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would be in the denominator of the dynamics equation (see Equation 17). The control 

vector is:  

 

x

y

z

w

w

w

r

u

 
 
 
 
 
 

. (15) 

The goal for this problem is to maximize the final velocity of the launch vehicle and this 

becomes the cost function. Final velocity was chosen to be the endpoint cost due to the 

desire to achieve maximum velocity in the quickest manner possible. The bounds on time 

that were used were a starting time of zero and a final time based on how long it took to 

consume all first stage propellant. This allows for the launch vehicle to be closer to final 

orbital velocity at first stage burnout. At a higher first stage burnout velocity, less thrust 

input is required from the second stage to achieve the desired orbit. When performing the 

analysis, the cost function is the variable that is to be minimized. In order to maximize 

the final velocity, the cost function has to be the negative of the final velocity, which is 

the same as minimizing the negative of final velocity seen in Equation 16. The square of 

velocity was used to remove the need to have a square root in the equation. This 

eliminates the potential of having a square root of zero, which has an infinite gradient. 

     2, fJ x u v      (16) 

We now define the dynamics equations which will govern this problem. These equations 

are formed from the time rate of change of the state variables. The dynamics are shown in 

Equation 17. 
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  (17) 

In (17), T is the thrust of the launch vehicle in N which is held constant during the flight 

time, m is the mass of the vehicle in kg, Isp specific impulse of the vehicle in sec,   is the 

gravitational constant of the earth in kg3/s2,   is the atmospheric density in kg/m3, 2
relv  

is the relative velocity of the vehicle with the atmosphere in km/s, S is the surface area of 

the vehicle in m2, and Cd is the coefficient of drag. 

A path constraint was added to the problem in order to maintain the magnitude of 

the thrust direction cosines equal to one and the radius from the states x, y, and z is equal 

to the control radius. These constraints were necessary to ensure that the defined 

magnitude of thrust would not be exceeded and launch vehicle flight path remained 

outside the radius of the Earth. Than path constraints are given as: 

 
2 2 2

2 2 2 2

1 0

0

x y zc c c

x y z r
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The full optimal control problem is now given as: 
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In (19), Lat and Lon are the latitude and longitude of the launch point and Er  is the radius 

of the Earth. 

C. DEVELOPING THE BOUNDARY VALUE PROBLEM 

As described in the previous chapter, the first step in setting up the OCP BVP 

involves solving for the Hamiltonian. Because the cost is only a function of final velocity, 

the running cost is zero and therefore  ,F x u  is zero. The Hamiltonian is now just a 
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function of the individual costates and time rate of change of each state variable.  
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 (20) 

Now that the Hamiltonian is formed, the next part is to perform the Hamiltonian 

minimization. The partial derivative of H is performed with respect to each of the 

controls. The resulting relationships are given in (21). 
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 (21) 

As seen in (21), the Hamiltonian is linear in the thrust direction. Therefore, in accordance 

with Pontryagin’s principle defined in the previous chapter, the partials need to be 

interpreted as switching functions shown by 1 2, ,S S and 3S . The adjoint equations are 

constructed next by taking the partial derivative of H with respect to the state vectors. 

The relationships are given by (22). 
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 (22) 

For the transversality condition, the endpoint Lagrangian is based completely on 

the endpoint cost of maximizing final velocity.  

          2 2 2
, f x f y f z fE x t v t v t v t      (23) 

Now the partial derivative of the endpoint Lagrangian is performed for each of the 

velocities and those are shown in Equation 24. 
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 (24) 

In (24), it can be seen that the velocity costate endpoint is related to the final velocity. 

This can be useful as a verification and validation result. Similarly, in (22) the velocity 
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adjoint is a function of the position costate. This suggests that those costates may vary 

linearly which is also useful as a check during the verification and validation. 

D. SUMMARY 

This chapter defined the launch problem and showed how Pontryagin’s principle 

can be used to construct the BVP for the launch problem. Once the BVP is constructed, it 

would be a very challenging process to obtain a solution using a shooting method (e.g., 

POST). The results obtained here will be used to verify a candidate solution. In the next 

chapter, DIDO is used to solve this problem with the goal of reducing computational 

time. 
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IV. LAUNCH TRAJECTORY OPTIMIZATION 

A. INTRODUCTION 

In this chapter, an optimal control solution is obtained with DIDO and verification 

and validation of the results is performed to indicate optimality of the solution. Then, the 

individual results will be displayed to analyze and illustrate the trends.  

B. OPTIMIZATION RESULTS 

The parameters that were used in this problem formulation can be seen in Table 1. 

After running DIDO, an optimal solution for 16 nodes was found indicating the problem 

was correctly posed. To confirm the results from the output of DIDO and series of plots 

were created for verification.  

 
Parameter Value/Range 

m0 219676 kg 

mf 6145 kg 

Isp 397.45 sec 

T 960000 N 

S 2.17 m2 

Cd 0.15 

x, y, z -6800 to 6800 km 

vx, vy, vz -5 to 5 km/s, -5 to 5km/s, 0 to 5 km/s 

cx, cy, cz -1 to 1, -1 to 1, 0 to 1 

wx, wy, wz -0.1 to 0.1 

r 6378.1363 to 6800 km 

Lat 28°N 31 min 26.61 sec 

Lon 80°W 39 min 3.06 sec 

Table 1.   Model parameters, from [14] 
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After examining Figures 2 and 3, the output is what is desired in that there is a parabolic 

increase in the launch vehicle’s velocity which obtains a final value of 4.73 km/s. The 

magnitude of the unit thrust vector is also constant at unity as required. 

  

Figure 2.  Position trajectories for maximum final velocity 

 

Figure 3.  Velocity and unit-thrust vectors for maximum final velocity 
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After reviewing the plots of the costates from Figure 4, they behave as expected 

based on the adjoint equations that were derived from (22). Specifically examining the 

adjoint equations for the velocity costates, the derivative of the individual costate is the 

negative of the position costate.  

 

Figure 4.  Costate trajectories for maximum final velocity 
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running DIDO. After removing the velocity scaling of 7.9054 km/s, the final velocity 

costate values agreed with the transversality conditions. This analysis further validates 

the results obtained by DIDO. 

 

Figure 5.  Verification and validation of costates 
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Figure 6.  Altitude as a function of time 
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Figure 7.  Control vectors 

 

Figure 8.  Hamiltonian evolution as a function of time 
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C. VERIFICATION AND VALIDATION 

In order to verify the results that were obtained from DIDO, a simulation was run 

using the ode45 solver in MATLAB. The control vector which was obtained via DIDO is 

used to propagate the solution to verify the results. This will confirm whether or not the 

solution obtained via DIDO is feasible for implementation. When the two results are 

plotted against each other, it can be seen if the trends are the same or if there are large 

disparities in the data. If the two results are the same, it shows that the optimal solution 

obtained from DIDO is a valid one. If they are different, then the DIDO solution may not 

be accurate enough and the problem set up may need to be reevaluated and solved with 

larger number of nodes. Figure 9 shows the plots of the DIDO solution compared with 

the propagated solution 

 

Figure 9.  Verification and validation of DIDO solution 
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In Figure 9, it can be seen that the two solutions are nearly identical. This shows that the 

solution obtained from DIDO is indeed a feasible one. 

D. FURTHER ANALYSIS 

After the optimal results were obtained from DIDO, there was some further 

analysis done to assist with better visualization of the trajectory. The first analysis was a 

coordinate transformation as seen in Figure 10. The simulation is best solved in ECI 

coordinates since most launches target a specific orbit and it is best to maintain the state 

vectors in a coordinate system that is centered intertially in the Earth. To better visualize 

the trajectory of the launch vehicle a rotation matrix was applied to the coordinates to 

transform them from Earth centered inertial to a north-west-up frame shown in Figure 10. 

This was done by rotating about the z-axis to position the y-axis at the longitude of the 

launch point. Next, the coordinate system was rotated about the new x-axis to point the z-

axis to the latitude of the launch point. Lastly, the coordinate system was rotated about 

the new z-axis to point the x-axis in the north direction. The resulting coordinate system 

now has the x-axis pointing north, y-axis point west, and the z-axis as the zenith 

 



 27

 

Figure 10.  Coordinate transformation from ECI to NWU 

The transformation matrices used are given in (25) where Lon is the longitude of 

the launch site and Lat is the latitude.  
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 (25) 

After substituting the Lon and Lat for KSC, we obtain a final rotation matrix. 

 3 2 1

0.0776 0.4712 0.8786

0.9867 0.1625 0

0.1427 0.8669 0.4775

C C C C

 
     
  

 (26) 

Figures 11 and 12 show the launch vehicle’s trajectory after performing the coordinate 

transformation with the origin of the new coordinate system being the launch point. The 

results are exactly as expected in that initially the thrust vector is vertical direction and 

beginning to turn over into the direction of flight. That is consistent with the constraint 

that was applied to ensure that the initial thrust vector was aligned with launch point’s 

radius. The velocity is at all times tangential to the launch vehicle’s trajectory.  
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Figure 11.  Launch vehicle trajectory with thrust vectors 

 

Figure 12.  Launch vehicle trajectory with velocity vectors 
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The next analysis performed was to plot the rotated trajectory on a Google Earth 

plot to show how the trajectory performed when plotted in reference to the land mass. 

Figures 13 and 14 provide a perspective of the launch vehicle as it leaves the launch point 

and travels in a north easterly direction. This is consistent with launches that are currently 

done at the KSC in that once the launch vehicle leaves the launch pad, it heads in a north 

easterly direction to ensure a safe area to drop the boosters. Figure 15 shows a plot of the 

STS-135 launch [15]. It can be clearly seen that the trajectory developed using DIDO is 

very similar to the trajectories used by NASA for the space shuttle (shown by the 

trajectory given in Figure 15).  

 

Figure 13.  Google earth 3D view of the launch trajectory 
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Figure 14.  Google earth 2D view of the launch trajectory 

 

Figure 15.  Google earth 2D view of STS-135 trajectory, from [15] 

E. PROBLEMS ENCOUNTERED 

Throughout the process of creating a solution to this problem, there were many 

hurdles that had to be overcome in order to produce viable results. The first challenge 

was establishing a type of coordinate system that was to be used in order to model the 
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launch problem. First, the problem formulation was modeled in Cartesian coordinates. 

This created problems in effectively being able to maintain the trajectory from colliding 

with the surface of the Earth. The problem formulation was then shifted to polar 

coordinates which allowed for maintaining the radius of the trajectory outside the surface 

of the earth. The solution was then obtained in drag free environment but it was still 

desired to keep the problem in Cartesian coordinates. The problem was then shifted back 

to Cartesian and an optimal solution was finally obtained for a drag free environment. 

Once drag was introduced it was becoming impossible to keep the launch vehicle from 

colliding with the surface of the earth. After extensive isolation of the components to the 

dynamics equation, it was determined that the equation in which density was being 

calculated was the source of the problem. Once that was isolated, an optimal solution was 

found which lead to creating the method of solving for density that will be mentioned in 

the next chapter. Overcoming these challenges emphasizes that proper problem 

formulation is critical to successfully solving the problem. 

F. SUMMARY 

In this chapter, the optimal control solution for launch was presented and 

evaluated for feasibility. The validation checks were accomplished using the derived 

equations from the previous chapter. Once those checks were complete, the controls 

obtained via DIDO were propagated to obtain a new set of state variables. The two sets of 

states were plotted against each other to establish feasibility of the solution. The two 

results were nearly identical proving the solution was feasible. Next, the trajectory was 

transformed to another coordinate frame for visual reference and plotted using a Google 

Earth to evaluate how the trajectory performs with land mass visible. Once again that was 

checked against trajectories flow by NASA for the space shuttle. The present solution is 

very similar to existing trajectories. 
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V. MONTE CARLO SIMULATION 

A. INTRODUCTION 

One way to assess the impact of uncertainties in a dynamic system is by the use of 

a Monte Carlo analysis. This is done by drawing from a large pool of random samples 

and observing their behavior [16]. This chapter starts off by describing the density model 

used to model atmospheric density as a function of temperature offset and altitude. Next 

the Monte Carlo simulations that were performed to assess the effects of uncertainties in 

launch environmental are described. Three Monte Carlo simulation studies were 

performed. The first was a temperature only simulation, the second was a wind only 

simulation, and the third was a combination of both temperature and wind. Temperature 

and wind were chosen based on the possibility of these effects having the largest 

influence on the launch vehicle. 

B. DENSITY MODELING 

One model predicting atmospheric density as a function of altitude, r, uses an 

exponential form [14] . 

 0
0( ) exp

r r
r

H
     

 
  (27) 

In (27), ρ0 is the atmospheric density at sea level and H is the scale height parameter. For 

the density analysis in this thesis, various data points were taken from the 1976 Standard 

Atmosphere in order to calculate density as a function of altitude (alt) and temperature 

[17]. Data points were taken for temperature offsets (TO) from -30°C to 30°C in 10°C 

increments. Once those points were obtained they were plotted on an Excel scatter plot 

and a sixth order polynomial was used to create a curve fit of density versus altitude for 

each TO as seen in Figure 16. The format of the equation for modeling density is given as 

 6 5 4 3 2
1 2 3 4 5 6 7a alt a alt a alt a alt a alt a alt a         (28) 

Table 2 shows the coefficients at each power of alt for the given TO. 
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Figure 16.  Air density as a function of altitude and temperature 

 

TO (°C) a1 a2 a3 a4 a5 a6 a7 

-30 9.482e-9 -9.176e-7 3.329e-5 -5.958e-4 8.025e-3 -0.1355 1.370 

-20 8.699e-9 -8.380e-7 3.028e-5 -5.444e-4 7.587e-3 -0.1312 1.316 

-10 8.007e-9 -7.680e-7 2.765e-5 -4.996e-4 7.199e-3 -0.1271 1.271 

0 7.398e-9 -7.066e-7 2.536e-5 -4.607e-4 6.855e-3 -0.1233 1.227 

10 6.855e-9 -6.523e-7 2.333e-5 -4.266e-4 6.546e-3 -0.1197 1.186 

20 6.373e-9 -6.042e-7 2.155e-5 -3.965e-4 6.269e-3 -0.1163 1.147 

30 5.944e-9 -5.615e-7 1.998e-5 -3.700e-4 6.019e-3 -0.1131 1.111 

Table 2.   Coefficients from density curve fits 

Each of the columns of coefficients given in Table 2 were also fit to a linear curve 

to be able to be able to compute each coefficient as a function of TO. This allows a single 
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equation for density to be developed as a function of alt and TO. Figures 17 through 23 

show the curve fits for the given values of TO, for each of the coefficients in Table 2.  

 

Figure 17.  Curve fit for a1 

 

Figure 18.  Curve fit for a2 
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Figure 19.  Curve fit for a3 

 

Figure 20.  Curve fit for a4 
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Figure 21.  Curve fit for a5 

 

Figure 22.  Curve fit for a6 
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Figure 23.  Curve fit for a7 

Using the results from Figures 17 through 23, a single equation can be developed 

for calculating density: 
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5 3 2 4 3
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(29) 

Figure 24 shows the error of the single equation (29) and exponential density (27) with 

the densities obtained from the 1976 standard atmosphere. 
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Figure 24.  Error comparison of single equation and exponential for TO=0°C 

The error corresponding to the model (29) maintains a relatively constant value, 

close to zero whereas the exponential model has a rather high error during the first two 

thirds of the flight regime. Using the single equation that was produced by this thesis, the 

air density calculated will be more accurate and provide a better estimate of atmospheric 

drag during flight. Accordingly, this was the model used for obtaining the optimal launch 

trajectory discussed in the last chapter. 

C. TEMPERATURE VARIATION 

After the solution from DIDO was validated (see Chapter IV), the next step is to 

add a certain degree of variation into the dynamics so the effects can be analyzed. The 

first simulation analyzed the effects of temperature variation. A Monte Carlo simulation 

was run for 1000 different points using a normal temperature distribution to introduce the 

uncertainty. The 1-σ variation used in the temperature simulation was 30°C. Varying the 
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temperature changes the air density the launch vehicle encounters, which changes the 

amount of drag felt on the launch vehicle. The equation that was used to model 

temperature variation is given by (30). 

 *norm tempTO TO n   (30) 

In (30), TO is the random temperature used in the density calculation, TOnorm = 

0°C is the temperature offset based on current conditions, σtemp = 30°C is the temperature 

variation, and n is a random number produced from a normal distribution with 0   and 

1  . Figure 25 shows the resulting trajectories from the Monte Carlo simulation while 

Figure 26 shows the endpoints of the trajectories in the north-up plane. The variation in 

the north-west plane is shown in Figure 27. Referring to Figures 25 through 27, it appears 

that the launch trajectory is quite insensitive to large variation in temperature and the 

desired trajectory can still be achieved. 

 

Figure 25.  Monte Carlo simulation for temperature uncertainty 
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Figure 26.  Plot of endpoints from Monte Carlo for temperature in North-Up 

 

Figure 27.  Plot of endpoints from Monte Carlo for temperature in North-West 
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in Figure 28. The distribution looks as expected with a mean value of zero and a standard 

deviation of 30°C. 

 

Figure 28.  Temperature offsets for Monte Carlo simulation 

D. WIND VARIATION 

The next part of the Monte Carlo simulation involved introducing a wind 

variation. The expected wind patterns were obtained from the NOAA Earth Systems 

Research Laboratory (ERSL) for the periods of January to December at a level of 300 mb 

which is equivalent to 30,000 ft. [18]. Figures 29 and 30 are the graphics obtained from 

ERSL website [18]. 
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Figure 29.  Wind directions over North America at the surface, from [18] 

 

Figure 30.  Wind directions over North America at 30,000 ft., from [18] 

Figures 29 and 30 show that the prevailing winds have a general westerly 

direction at 30,000 ft. and a negligible wind component at the surface. For the Monte 

Carlo simulation, a normal distribution was used with a 1-σ variation in wind magnitude 

of 17mag
mwind s . Once the winds were broken down into components, they were 

multiplied by the Gaussian random number, n, with 0   and 1   then multiplied by 
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the inverse of the transformation matrix given by (25). This was used to convert the wind 

vector to ECI to be used in the dynamics equations.  
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 (31) 

The x, y, and z components of the wind variation were the added to the relative wind 

velocity in the dynamics equations given by (32). 

 relativev v r wind     (32) 

In (32), r  is the rotation velocity of the atmosphere based on Earth’s angular rotation 

vector (33) and the current value of r. 

 
5

0

0 ( / )

7.2921158553e

rad s


 
    
  

  (33) 

Figures 31 through 32 are the resulting plots of the trajectories from the Monte Carlo 

simulation and the trajectory endpoints. Figure 31 is the full trajectories from the Monte 

Carlo while Figures 32 and 33 are the trajectory endpoints in north-up and north-west, 

respectively.  
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Figure 31.  Monte Carlo simulation for wind uncertainty 

 

Figure 32.  Plot of endpoints from Monte Carlo for wind in north-up 
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Figure 33.  Plot of endpoints from Monte Carlo for wind in north-west 

The variance of the wind in the north-up plan is consistent with the variance in 

temperature in the same plane. Wind has a much smaller variance in the West direction 

which could suggest that the wind variation has a smaller effect on the launch trajectory 

than temperature. 

E. TEMPERATURE AND WIND VARIATION 

The last part of the Monte Carlo simulation involved testing variations in both 

temperature and wind described by (30) and (32). Figures 34 through 36 are the 

trajectories that were obtained and the trajectory endpoints. Figure 34 is the full trajectory 

obtained from the Monte Carlo while Figures 35 and 36 are the trajectory endpoints in 
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Figure 34.  Monte Carlo simulation for temperature and wind uncertainty 

  

Figure 35.  Plot of endpoints for Monte Carlo of temperature and wind in north-
up 
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Figure 36.  Plot of endpoints for Monte Carlo of temperature and wind in north-
west 

The trajectories and trajectory endpoints are consistent with the two previous Monte 

Carlo simulations. Tables 3 and 4 show the statistical data from the three simulations. 

The standard deviation of the position endpoints and the mean final velocity are the two 

most important variables that need to be evaluated. 

 

Simulation 
N (km) W (km) U (km) N (km) W (km) U (km) 

Temp 53.934 -87.895 33.621 0.390 0.402 0.247 

Wind 53.945 -87.908 33.630 0.123 0.011 0.098 

Both 53.949 -87.898 33.635 0.269 0.390 0.150 

Table 3.   Endpoint position means and standard deviations 
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Simulation 
Nv (km/s) 

Wv (km/s) 
Uv (km/s) 

Nv (km/s) 
Wv (km/s) 

Uv (km/s) 

Temp 2.151 -3.710 1.116 0.015 0.020 0.011 

Wind 2.151 -3.710 1.117 0.0035 1.587e-4 0.002 

Both 2.152 -3.710 1.117 0.012 0.020 0.008 

Table 4.   Endpoint velocity means and standard deviations 

From Table 3, it can be seen that neither of the uncertainties considered had a 

significant effect on the mean final position, but the temperature uncertainty gave the 

largest spread of endpoints. This suggests that more emphasis needs to be placed on 

predicting temperature than predicting wind patterns. In Table 4, neither of the 

uncertainties had any appreciable effect on the mean final velocity of the launch vehicle. 

Similar to before, the wind uncertainty had much smaller effect than temperature. This 

further confirms the conclusion that temperature has a larger influence on the launch 

trajectory than wind.  

F. SUMMARY 

In this chapter, a model was developed to more accurately predict atmospheric 

density. This lead to the formulation of a single equation that can predict atmospheric 

density as a function of temperature offset and altitude. Next, Monte Carlo simulations 

were performed to assess the effects of uncertainties in the model. The uncertain 

variables chosen were temperature and wind based on the fact that these quantities have 

the potential to produce the greatest effects on the launch trajectory. The results from the 

simulations were plotted as trajectories and their respective endpoints. The statistical 

analysis showed that temperature had the largest effect on the launch trajectory of the 

three Monte Carlo simulations that were run. Based on the results from this chapter, the 

nominal solution may be sufficient for control of the first stage. 
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VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSION 

The stated goals for this thesis were achieved in that a rather convenient and 

simplistic model was created to expedite the process to create an initial launch trajectory 

for the first stage. The optimal trajectory that was created using DIDO was deemed to be 

feasible after a series of verification and validation tests. This was done with derived 

equations from Chapter III and propagation of the controls and plotting the results against 

the DIDO solution. Using the optimal trajectory, a series of uncertainties were placed on 

the simulation to analyze the sensitivity of the solution. The Monte Carlo simulations 

produced small deviations in the endpoint positions and had little effect on the vehicle’s 

final velocity. From here, the nominal solution could be sufficient to control the starting 

point for the second stage, pending additional analysis. There is substantial room for 

future work that can be done in this area. 

B. HIGHER FIDELITY MODEL 

When analyzing the dynamics portion of this model, the equations used were a 

simplification of reality. For example one of the assumptions in the model was that the 

thrust profile is constant over the period of the launch. Depending on the type of rocket, 

very different thrust profiles exist. This thesis does not address the design of rocket 

motors but more can be added to incorporate thrust profiles for various rocket motors 

used in industry. More emphasis should also be placed on the aerodynamics portion to 

produce more accurate approximation of aerodynamic drag. In the same fashion, models 

used for the Earth’s gravitational force did not account for the oblateness of the earth or 

mass distribution. The atmospheric model that was used relies on a sixth order 

polynomial created as a curve fit base on observations from the 1976 standard 

atmospheric model that only goes until 30,000 ft. in increments of 1,000 ft. While the 

developed model seems to accurately estimate the atmospheric condition, there is still 

room for increasing the fidelity of the model. While most of the time higher order terms 
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are neglected, the combination of multiple “negligible” terms can have an appreciable 

effect. 

C. ADDITIONAL STAGES 

Future work should take into account multiple stages to create a more realistic 

launch to orbit. The transition from single stage to multiple stages would be rather 

seamless. A separate function block would need to be written such that the starting 

position for the subsequent stages would be the ending points from the previous stages. In 

the same way the Monte Carlo simulation could be run to assess the sensitivity of the 

control for each stage. 

D. CODE ROBUSTNESS 

Other launch trajectory generation tools should be compared against the results of 

this thesis. The time to formulate an optimal trajectory would be the most important 

metric to determine the effectiveness of this thesis research. Other areas might include 

how other trajectory generation tools perform their uncertainty analysis.  
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